|
saya mengenali perkataan ni masa form 1 ituoun in encyclopaedia - dan ada satu term yg dikaikan dgn topolgi iaitu Mobius "Strip"
dan salah seorang kenalan pernah bagi tahu konsp topologi ni menarik terutamanya dari segi teorinya iaitu
"seekor lalat yang masuk ke dalam mulut sebiji botol dan terbang di dalamnya dan keluar dari mulut botol itu"
so anyone boleh ceritakan apa aplikasi konsep topologi dalam daily livings?
thanks. Bless you all.
[ Last edited by mbhcsf at 14-2-2008 10:44 PM ] |
|
|
|
|
|
|
|
waah,
mula2 ingatkan peta topology
apa pun benda ni kira cam advance maths,
ada belajar basic skit dulu, tapi tak detail, ada beberapa teorem, konsep dan basic yg kena tahu,
mobius strip,
Topology
Topology is the mathematical study of the properties that are preserved through deformations, twistings, and stretchings of objects.
Tearing, however, is not allowed. A circle is topologically equivalent to an ellipse (into which it can be deformed by stretching) and a sphere is equivalent to an ellipsoid.
Similarly, the set of all possible positions of the hour hand of a clock is topologically equivalent to a circle (i.e., a one-dimensional closed curve with no intersections that can be embedded in two-dimensional space), the set of all possible positions of the hour and minute hands taken together is topologically equivalent to the surface of a torus (i.e., a two-dimensional a surface that can be embedded in three-dimensional space), and the set of all possible positions of the hour, minute, and second hands taken together are topologically equivalent to a three-dimensional object.
SEE ALSO: Algebraic Topology, Differential Topology, Genus, Homotopy, Klein Bottle, Knot, Kuratowski Reduction Theorem, Lefshetz Trace Formula, Low-Dimensional Topology, Manifold, M鯾ius Strip, Point-Set Topology, Pretzel Transformation, Sphere Eversion, Topological Basis, Topological Space, Zariski Topology. [Pages Linking Here]
link to topology
http://mathworld.wolfram.com/topics/Topology.html[/url
link topic yg pernah belajar, skit2 je
[url]http://en.wikipedia.org/wiki/Topological_graph_theory
http://en.wikipedia.org/wiki/Water%2C_gas%2C_and_electricity
[ Last edited by me_ai at 15-2-2008 11:40 AM ] |
|
|
|
|
|
|
|
adehh. aku punya topology rules dlm GIS je |
|
|
|
|
|
|
|
Mobius Strip adalah satu bentuk yg menarik... sebab bentuk ni wujud dlm 3D tapi cuma ada satu permukaan... |
|
|
|
|
|
|
|
so.
Originally posted by meitantei at 25-2-2008 06:26 PM
Mobius Strip adalah satu bentuk yg menarik... sebab bentuk ni wujud dlm 3D tapi cuma ada satu permukaan...
and i am trying to figure out why it has fascinated people so much?
in terms of applicability? |
|
|
|
|
|
|
|
pada saya it's about the perception of space, g certain aspects lah.. bending of / modifyinsurface and mobius strip. Ihav eyet togain the complete understandingof it even at the most basic level and that guy just elling me abouta fly that enters a bottle and coming out from the same point of entry...and i say yeah..so? why is has to be associated with topology.
it has something to do with maths i supposed... |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|