|
Dah Pening Baca Thread yg Serius?? Masuk Sini..
[Copy link]
|
|
Reply #116 mobalinbong's post
Adakah ni nak tahu sapa pemenang world cup 2006? 1962, 1970, 1974, 1978 tu semua tahun world cup berlangsung...
Kalau ni la jawapannya, mana ada kaitan ngan sains ngan math.... |
|
|
|
|
|
|
|
Reply #121 padlie's post
aisehmen tuan Mod... dah kata thread "ening baca thread yg serius.."
kita relaks kan minda dgn perkembangan dunia semasa :bgrin:
ni bukan teori atau hipotesis yg dah dibuktikan.. teori memain je nih.. |
|
|
|
|
|
|
|
Aiseh.... dah lama aku tak lawat poreem niih.... :bgrin: |
|
|
|
|
|
|
|
Reply #122 Nesta13's post
hehehhe..skali skala refresh kan la pala...
wokey asik2 tension tegang urat kpala urut2 skit |
|
|
|
|
|
|
|
Di samping anda melihat gambar-gambar mustahil.... Tolong bincangkan ini...
katakan x= 0.99999999999999999999999999999 (infiniti)
so, 10x=9.99999999999999999999999999 (infiniti)
lalu 10x-x=9
x(10-1)=9
9x=9
x=1 (???? :kant: ) |
|
|
|
|
|
|
|
Aku cadangkan, sesiapa yg nak dapat PhD kejuruteraan awam atau nak dpt pangkat prof, lihat page 5, post 125... :bgrin: |
|
|
|
|
|
|
|
Originally posted by aku_EnSeM at 7-6-2006 04:32 PM
Di samping anda melihat gambar-gambar mustahil.... Tolong bincangkan ini...
katakan x= 0.99999999999999999999999999999 (infiniti)
so, 10x=9.99999999999999999999999999 (infiniti)
lalu 10x-x=9 ...
kan senang kalo bulat kan aje 0.9999999999999(infiniti) tu sbg 1
lol |
|
|
|
|
|
|
|
Originally posted by aku_EnSeM at 7-6-2006 04:32 PM
katakan x= 0.99999999999999999999999999999 (infiniti)
so, 10x=9.99999999999999999999999999 (infiniti)
lalu 10x-x=9
x(10-1)=9
9x=9
x=1 (???? )
Hello aku_EnSeM
Lama tak nampak. Dah start belajar ke? Utk menjawab soalan di atas.
When you think of 0.999... as being 'a little below 1', it's because
in your mind, you've stopped expanding it; that is, instead of
0.999999...
you're _really_ thinking of
0.999...999
which is not the same thing. You're absolutely right that 0.999...999
is a little below 1, but 0.999999... doesn't fall short of 1 _until_
you stop expanding it. But you never stop expanding it, so it never
falls short of 1.
Suppose someone gives you $1000, but says: "Now, don't spend it all,
because I'm going to go off and find the largest integer, and after I
find it I'm going to want you to give me $1 back." How much money has
he really given you?
On the one hand, you might say: "He's given me $999, because he's
going to come back later and get $1."
But on the other hand, you might say: "He's given me $1000, because
he's _never_ going to come back!"
It's only when you realize that in this instance, 'later' is the same
as 'never', that you can see that you get to keep the whole $1000. In
the same way, it's only when you really understand that the expansion
of 0.999999... _never_ ends that you realize that it's not really 'a
little below 1' at all.
http://mathforum.org/library/drmath/view/55746.html |
|
|
|
|
|
|
|
Originally posted by aku_EnSeM at 7-6-2006 04:32 PM
Di samping anda melihat gambar-gambar mustahil.... Tolong bincangkan ini...
katakan x= 0.99999999999999999999999999999 (infiniti)
so, 10x=9.99999999999999999999999999 (infiniti)
lalu 10x-x=9 ...
yg mana betul?
10x-x=9
atau 10x-x=9x? |
|
|
|
|
|
|
|
Originally posted by padlie at 7-6-2006 08:59 PM
yg mana betul?
10x-x=9
atau 10x-x=9x?
Sebenarnya dua-dua betul.
Bagi yang pertama:
10x - x = ?
x = 0.9999....(infiniti)
= 10*(0.9999....) - 0.9999....
= 9.9999.... - 0.9999....
= 9 |
|
|
|
|
|
|
|
Reply #131 MACD's post
Sebabnya ialah 0.9999..... = 1!
Believe me. |
|
|
|
|
|
|
|
hadoi.. menarik tp pening daa nak pk.. korang ni memang pandai2 belaka laa.. seronok aku baca.. bagi laa lagi |
|
|
|
|
|
|
|
Originally posted by MACD at 7-6-2006 05:33 PM
Hello aku_EnSeM
Lama tak nampak. Dah start belajar ke? Utk menjawab soalan di atas.
When you think of 0.999... as being 'a little below 1', it's because
in your mind, you've stopped ...
very good explanation.. i've been thinking of this matter for almost 1 week since i received this problem.
when i tried the same concept to the other number, different thing happens..
x=0.88888888888888.........
10x=8.888888888888888888.......
10x-x=8
9x=8
x=0.8888888888888........ |
|
|
|
|
|
|
CikTipah This user has been deleted
|
|
|
|
|
|
|
|
Originally posted by aza at 8-6-2006 10:07 AM
hadoi.. menarik tp pening daa nak pk.. korang ni memang pandai2 belaka laa.. seronok aku baca.. bagi laa lagi
Kitorang ni takde lah pandai macam Albert Einstein tu. Cuma minat menambah ilmu pengetahuan je. : |
|
|
|
|
|
|
|
Originally posted by aku_EnSeM at 12-6-2006 01:09 PM
very good explanation.. i've been thinking of this matter for almost 1 week since i received this problem.
when i tried the same concept to the other number, different thing happens..
x=0.88888888888888.........
10x=8.888888888888888888.......
10x-x=8
9x=8
x=0.8888888888888........
Good observation. Tak pernah terbaca pasal nombor bertitik perpuluhan infiniti lain selain 0.9999.... lagi
:hatdown: |
|
|
|
|
|
|
|
Boleh ke kita anggap 0.99999....... = 1?
if 1 / 3 = 0.33333333333333.............. then
0.333333333333....... x 3 not equals to 1.
haduih, penin2 |
|
|
|
|
|
|
CikTipah This user has been deleted
|
|
|
|
|
|
|
| |
Category: Belia & Informasi
|