|
Soalan berkaitan Matematik & Matematik Tambahan
[Copy link]
|
|
Tapi,cikgu add maths saya cakap kita boeh MS Excel untuk buat soalan statistik,tapi saya tidak tahu bagaimana hendk gunakan Excel..ada orang boleh bantu explain cam mana nak gunakan Excel untuk buat statistik.... |
|
|
|
|
|
|
sweet.dayah This user has been deleted
|
cikgu saya pun ada cakap leh wat statistik guna ms excel..sy pun x pandai..nak guna.. |
|
|
|
|
|
|
|
yeah, u can use excel. it's not that hard. tapi memula cam susah sket la. |
|
|
|
|
|
|
|
cam mana nak guna excel...siapa tahu bolehlah ajar saya? |
|
|
|
|
|
|
|
nak guna exel boleh..
tapi question is.. kalo time exam korang bleh bawak masuk laptop ke nak jawab soklan exam tu?
so eloklah mahir2kan diri dulu memahami soalan statistic dan try buat manually |
|
|
|
|
|
|
|
Ni soalan yang diorang bagi tu adalah soalan Projek Add Math Form 4... jadi kat sini meamng bestlah.... boleh dapat jawapan.//// student adli pun ada datang tanya......
adli bagi klu je kat dia.... soalan satu yang senang dia tak dapat jawap.. apa lagi solana yang seterusnya..
sweet.dayah di sekolah kat mana? |
|
|
|
|
|
|
|
isk... senang kan student zaman skarang...boleh tanya kat forum
kita 5 thn lepas pon...still terhegeh2 discuss sesama rakan sekolah je |
|
|
|
|
|
|
deepjunior This user has been deleted
|
giliran saya pula ye..
Verify that the problem is identity
tan^2x - sin^2x = tan^2x sin^2x
[ Last edited by deepjunior at 20-8-2005 02:51 AM ] |
|
|
|
|
|
|
|
tu soalan trigonometry kan |
|
|
|
|
|
|
deepjunior This user has been deleted
|
ntah agaknya...guna substitution je.. |
|
|
|
|
|
|
|
Originally posted by deepjunior at 17-8-2005 06:28 AM
giliran saya pula ye..
Verify that the problem is identity
tan^2x - sin^2x = tan^2x sin^2x
tan^2x or tan(2x)? |
|
|
|
|
|
|
deepjunior This user has been deleted
|
tan square of x
not tan square of 2x
(tan^2)(x) |
|
|
|
|
|
|
|
Originally posted by Atomic_Omnikid at 7-8-2005 06:29 PM
[ii]Jika Salina mendapat markah 80,nyatakan julat markah yang perlu diperoleh oleh azlan untuk mengatasi marka Salina.
Cadangan Jawapan
[(a+b+c+d+e)/5] - [(a+b+c+d)/4] > 0
[(256 + 80) /5] - [(186 + d) /4] > 0
4(336) - (930 + 5d) > 0
-5d > -414
maka , d > 82.8 |
|
|
|
|
|
|
sweet.dayah This user has been deleted
|
mm...me school kat smk.banting... |
|
|
|
|
|
|
sweet.dayah This user has been deleted
|
nyway..kat sesap[er yg dah tolong bg clue tu...
thx very2 much erk...
sori menyusahkan korg2 sume... |
|
|
|
|
|
|
deepjunior This user has been deleted
|
Originally posted by deepjunior at 17-8-2005 06:28 AM
giliran saya pula ye..
Verify that the problem is identity
tan^2x - sin^2x = tan^2x sin^2x
takde soalan camni ke dalam spm?? |
|
|
|
|
|
|
|
Originally posted by deepjunior at 17-8-2005 06:28 AM
giliran saya pula ye..
Verify that the problem is identity
tan^2x - sin^2x = tan^2x sin^2x
aku ubah skat notation kepada yang aku familiar sket la.
(tan x)^2 - (sin x)^2 = (tan x)^2 * (sin x)^2
so, utk soklan camni, biasanya ko boleh pilih nak start dari left or right side of the equation.
aku choose nak start from the right side.
(tan x)^2 * (sin x)^2
***(sin x)^2 = 1 - (cos x)^2 <---mesti tau identity ni
so,
(tan x)^2 * (sin x)^2 = (tan x)^2 * [1 - (cos x)^2] = (tan x)^2 - (tan x)^2 * (cos x)^2
*** since tan x = (sin x)/(cos x) , so (tan x)^2 = (sin x)^2 / (cos x)^2
so, (tan x)^2 - (tan x)^2 * (cos x)^2 = (tan x)^2 - [(sin x)^2 / (cos x)^2] * (cos x)^2 <--- cancelkan (cos x)^2 dapat
= (tan x)^2 - (sin x)^2 <--maka terbuktilah.
p/s: baca kat sini susah sket nak faham, baik salin balik atas kertas ngan notation yang lagi mudah faham
there's a website that looks like a good reference for problems like this
http://library.thinkquest.org/17119/ |
|
|
|
|
|
|
deepjunior This user has been deleted
|
Right!!!
Lets see what I did from the left side.
(tan x)^2 - (sin x)^2 = (tan x)^2 * (sin x)^2
Since tan x = (sin x)/(cos x) , so (tan x)^2 = (sin x)^2 / (cos x)^2
[(sin x)^2 / (cos x)^2] - (sin x)^2
multiply (cos x)^2 on both sides we get
[(sin x)^2 - (sin x)^2 * (cos x)^2] / (cos x)^2
Since (cos x)^2 = 1 - (sin x)^2---substitute
[(sin x)^2 - (sin x)^2 * (1 - (sin x)^2)] / (cos x)^2
multiply (sin x)^2 with (1 - (sin x)^2 we get
[(sin x)^2 - (sin x)^2 + (sin x)^2 * (sin x)^2] / (cos x)^2
(sin x)^2 - (sin x)^2 cancel out each other, only this left
[(sin x)^2 * (sin x)^2] / (cos x)^2
since (sin x)^2 / (cos x)^2 = (tan x)^2 so
[(sin x)^2 * (sin x)^2] / (cos x)^2 = (tan x)^2 * (sin x)^2
[ Last edited by deepjunior at 22-8-2005 06:05 AM ] |
|
|
|
|
|
|
6630 This user has been deleted
|
Azlan ialah seorang murid yang baru berpindah dari SMK Terengganu ke sekolah ini selepas ujian pertama telah diadakan.Dia hanya mengambil 3 ujian Matematik Tambahan sahaja dan memperoleh markah min 62.Satu lagi ujian Matematik Tambahanakan diadakan.Azlan akan mengambilnya sebagai ujian keempat dan Salina pula akan mengambilnya sebagai ujian kelima dan min 4 ujian sebelumnya ialah 64. Cari semua markah yang perlu dicapai oleh Azlan dalam integer bagi ujian ini supaya markah minnya melebihi markah min Salina.
Terangkan bagaimana memperoleh penyelesaian dengan menggunakan sekurang-kurangnya dua strategi. |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|